Researchers Hit ‘Fast Forward’ on Materials Discovery with Self-Driving Labs

, , ,

On Jul. 14, 2025, researchers from North Carolina State University (NCSU) have demonstrated a new technique that allows “self-driving laboratories” to collect at least 10 times more data than previous techniques at record speed. The advance – which is published in Nature Chemical Engineering – dramatically expedites materials discovery research, while slashing costs and environmental impact.

“Imagine if scientists could discover breakthrough materials for clean energy, new electronics, or sustainable chemicals in days instead of years, using just a fraction of the materials and generating far less waste than the status quo,” says Milad Abolhasani, corresponding author of a paper on the work and ALCOA Professor of Chemical and Biomolecular Engineering at North Carolina State University. “This work brings that future one step closer.”

Until now, self-driving labs utilizing continuous flow reactors have relied on steady-state flow experiments. In these experiments, different precursors are mixed together and chemical reactions take place, while continuously flowing in a microchannel. The resulting product is then characterized by a suite of sensors once the reaction is complete.

Steady-state flow experiments require the self-driving lab to wait for the chemical reaction to take place before characterizing the resulting material. That means the system sits idle while the reactions take place, which can take up to an hour per experiment.

Self-driving laboratories are robotic platforms that combine machine learning and automation with chemical and materials sciences to discover materials more quickly. The automated process allows machine-learning algorithms to make use of data from each experiment when predicting which experiment to conduct next to achieve whatever goal was programmed into the system.

In this work, the researchers found the self-driving lab that incorporated a dynamic flow system generated at least 10 times more data than self-driving labs that used steady-state flow experiments over the same period of time, and was able to identify the best material candidates on the very first try after training.

“The most important part of any self-driving lab is the machine-learning algorithm the system uses to predict which experiment it should conduct next,” Abolhasani says. “This streaming-data approach allows the self-driving lab’s machine-learning brain to make smarter, faster decisions, honing in on optimal materials and processes in a fraction of the time. That’s because the more high-quality experimental data the algorithm receives, the more accurate its predictions become, and the faster it can solve a problem. This has the added benefit of reducing the amount of chemicals needed to arrive at a solution.”

Tags:


Source: North Carolina State University
Credit: