
Using generative AI, researchers design compounds that can kill drug-resistant bacteria
On Aug. 14, 2025, with help from artificial intelligence, researchers from Massachusetts Institute of Technology (MIT) announced they have have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA).
Using generative AI algorithms, the research team designed more than 36 million possible compounds and computationally screened them for antimicrobial properties. The top candidates they discovered are structurally distinct from any existing antibiotics, and they appear to work by novel mechanisms that disrupt bacterial cell membranes.
This approach allowed the researchers to generate and evaluate theoretical compounds that have never been seen before — a strategy that they now hope to apply to identify and design compounds with activity against other species of bacteria.
“We’re excited about the new possibilities that this project opens up for antibiotics development. Our work shows the power of AI from a drug design standpoint, and enables us to exploit much larger chemical spaces that were previously inaccessible,” says James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. Collins is the senior author of the study, which appears in Cell. The paper’s lead authors are MIT postdoc Aarti Krishnan, former postdoc Melis Anahtar ’08, and Jacqueline Valeri PhD ’23.
In hopes of finding new antibiotics to fight this growing problem, Collins and others at MIT’s Antibiotics-AI Project have harnessed the power of AI to screen huge libraries of existing chemical compounds. This work has yielded several promising drug candidates, including halicin and abaucin.
Tags:
Source: Massachusetts Institute of Technology
Credit: